Cohere
Select a language
- Python
- JavaScript
Chroma also provides a convenient wrapper around Cohere's embedding API. This embedding function runs remotely on Cohere’s servers, and requires an API key. You can get an API key by signing up for an account at Cohere.
This embedding function relies on the cohere
python package, which you can install with pip install cohere
.
import chromadb.utils.embedding_functions as embedding_functions
cohere_ef = embedding_functions.CohereEmbeddingFunction(api_key="YOUR_API_KEY", model_name="large")
cohere_ef(texts=["document1","document2"])
const {CohereEmbeddingFunction} = require('chromadb');
const embedder = new CohereEmbeddingFunction("apiKey")
// use directly
const embeddings = embedder.generate(["document1","document2"])
// pass documents to query for .add and .query
const collection = await client.createCollection({name: "name", embeddingFunction: embedder})
const collectionGet = await client.getCollection({name:"name", embeddingFunction: embedder})
You can pass in an optional model_name
argument, which lets you choose which Cohere embeddings model to use. By default, Chroma uses large
model. You can see the available models under Get embeddings
section here.
Multilingual model example
cohere_ef = embedding_functions.CohereEmbeddingFunction(
api_key="YOUR_API_KEY",
model_name="multilingual-22-12")
multilingual_texts = [ 'Hello from Cohere!', 'مرحبًا من كوهير!',
'Hallo von Cohere!', 'Bonjour de Cohere!',
'¡Hola desde Cohere!', 'Olá do Cohere!',
'Ciao da Cohere!', '您好,来自 Cohere!',
'कोहिअर से नमस्ते!' ]
cohere_ef(texts=multilingual_texts)
const {CohereEmbeddingFunction} = require('chromadb');
const embedder = new CohereEmbeddingFunction("apiKey")
multilingual_texts = [ 'Hello from Cohere!', 'مرحبًا من كوهير!',
'Hallo von Cohere!', 'Bonjour de Cohere!',
'¡Hola desde Cohere!', 'Olá do Cohere!',
'Ciao da Cohere!', '您好,来自 Cohere!',
'कोहिअर से नमस्ते!' ]
const embeddings = embedder.generate(multilingual_texts)
For more information on multilingual model you can read here.